Pharmacokinetic/Pharmacodynamic Modeling of Renin-Angiotensin Aldosterone Biomarkers Following Angiotensin-Converting Enzyme (ACE) Inhibition Therapy with Benazepril in Dogs

Jonathan P. Mochel • Martin Fink • Mathieu Peyrou • Antoine Soubret • Jérôme M. Giraudel • Meindert Danhof

Received: 22 July 2014 / Accepted: 24 November 2014
© Springer Science+Business Media New York 2014

ABSTRACT

Purpose The objective of this research was to provide a comprehensive description of the effect of benazepril on the dynamics of the renin-angiotensin aldosterone system (RAAS) in dogs.

Methods Blood specimens for renin activity (RA), angiotensin II (AII), and aldosterone (ALD) quantitation in plasma were drawn from 12 healthy adult beagle dogs randomly allocated to 2 treatment groups: (i) benazepril 5 mg PO, q24 h (n: 6) and (ii) placebo (n: 6), in a cross-over design. A mechanism-based pharmacokinetic/pharmacodynamic model, which includes the periodic nature of RA, AII, and ALD during placebo treatment and the subsequent changes in dynamics following repeated dosing with benazepril, was developed.

Results The disposition kinetics of benazepril active metabolite, benazeprilat, was characterized using a saturable binding model to the angiotensin converting enzyme. The modulatory effect of benazeprilat on the RAAS was described using a combination of immediate response models. Our data show that benazepril noticeably influences the dynamics of the renin cascade, resulting in a substantial decrease in AII and ALD, while increasing RA throughout the observation span.

Conclusions The model provides a quantitative framework for better understanding the effect of ACE inhibition on the dynamics of the systemic RAAS in dogs.

KEY WORDS benazeprilat • mechanism-based PK/PD • RAAS

ABBREVIATIONS

ACE Angiotensin-converting enzyme
AII Angiotensin II
ALD Aldosterone
ARA Aldosterone receptor antagonist
ARB Angiotensin II receptor blocker
BSV Between-subject variability
(standard deviation of the random effect)
CHF Congestive heart failure
CV% Coefficient of variation (%)
CVHD Chronic valvular heart disease
EIA Enzyme immunoassay
MB Mechanism-based
OFV Objective function value
PD Pharmacodynamics
PK Pharmacokinetics
PO Per os
RA Renin activity
RAAS Renin-angiotensin-aldosterone system
RSE Relative standard error (equivalent to CV%)
SD Standard deviation
TMDD Target-mediated drug disposition
WRES Weighted residuals

Electronic supplementary material The online version of this article (doi:10.1007/s11095-014-1587-9) contains supplementary material, which is available to authorized users.

J. P. Mochel • M. Danhof
Department of Pharmacology, Leiden-Academic Centre for Drug Research 2300 Leiden, The Netherlands

J. P. Mochel • M. Fink • A. Soubret
Department of Integrated Quantitative Sciences, Novartis Campus St. Johann WSJ-27.6.023, 4002 Basel, Switzerland
e-mail: jonathan.mochel@novartis.com

M. Peyrou
Department of Therapeutics Research, Novartis Centre de Recherche Sante Animale SA 1566 St-Aubin, Switzerland

J. M. Giraudel
Department of Research and Development, Novartis Werk Rosental 4058 Basel, Switzerland

Published online: 02 December 2014
INTRODUCTION

Canine congestive heart failure (CHF) most often develops consequent to chronic mitral valvular heart disease (CVHD) (1), a condition that affects about 75% of dogs over the age of 16 (2). Similar to humans, activation of systemic and tissue mediators of the renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the pathophysiology of heart failure in dogs (3).

Elevated angiotensin II (AII) plasma levels have been associated with poorer prognosis and increased mortality in human patients with CHF. In a study by Roig et al. (4), AII concentrations were a significant predictor of death or new heart failure episodes in patients with left ventricular dysfunction. Later, Güder et al. (5) showed that high ALD levels were a predictor of increased mortality risk in human patients with CHF of any cause and severity. Long-term elevation of aldosterone (ALD) contributes to an exaggerated workload, inducing myocyte hypertrophy, necrosis and fibrosis (6), leading to the progression of the disease to its end stage (7).

Modulation of the RAAS by angiotensin-converting enzyme (ACE) inhibitors is associated with significant reduced mortality in human and canine patients suffering from CHF (8). Benazepril hydrochloride (Fortekor®; Novartis Animal Health, Basel, Switzerland) (PubChem CID: 5362124) is a nonsulphydryl prodrug which is converted in vivo into benazeprilat, a highly potent and selective inhibitor of ACE (9) with well-documented effectiveness in canine CHF (8).

According to Toutain and Lefebvre (10), an oral daily dose of 0.125 mg/kg benazepril would produce inhibition of the entire systemic ACE pool within 48 h in dogs. However, results from our previous research (11) in dogs receiving on average 0.7 mg/kg benazepril only showed partial reduction of AII after 5 days of dosing, which is consistent with earlier observations in human patients under ACE inhibition therapy (12,13). Taken together, these findings suggest that ACE activity may not be a sensitive endpoint to properly assess the modulatory effect of benazepril on the RAAS.

Despite the importance of benazepril in the management of heart diseases in canine patients, no detailed information about the relation of benazeprilat to renin activity (RA), AII, and ALD time-variations is presently available. The objective of this study was to provide a comprehensive description of the effect of benazeprilat on the dynamics of the renin-angiotensin cascade in dogs, using a nonlinear mixed-effects pharmacokinetic/

NOTATIONS

- C_{ij}: ng/ml, or nmol/l (nM) Predicted total benazeprilat concentration at time t_j for an individual i
- A_i: pg/ml Predicted difference between AII concentrations during placebo treatment and those at corresponding times t_j after benazepril administration for an individual i
- T_{inf}: h Duration of the hypothetical infusion of benazepril into the depot compartment
- k_a: h$^{-1}$ First-order rate constant representing the absorption of benazepril into the central compartment and its in vivo conversion to benazeprilat
- k_{10}: h$^{-1}$ First-order rate constant of benazeprilat elimination from the central compartment
- k_1: nM$^{-1}$.h$^{-1}$ Second-order rate constant of association of the benazeprilat-ACE complex
- k_2: h$^{-1}$ First-order rate constant of dissociation of the benazeprilat-ACE complex
- BS: nM Maximal binding capacity to circulating ACE
- V_c/F: l/kg Apparent volume of distribution of benazeprilat
- CI/F: l.h$^{-1}$/kg Apparent systemic clearance of benazeprilat
- E: — Global extraction coefficient of benazeprilat
- M: pg/ml or pg/ml.h$^{-1}$ Mesor (daily average of rhythm)
- A: pg/ml or pg/ml.h$^{-1}$ Amplitude of the cosine function
- ψ: h Acrophase (or time of peak) of the cosine function
- T: h Period of the cosine function
- I_{max} (All): — Maximum inhibition of AII production
- IC_{50} (All): ng/ml Benazeprilat concentration that produces half of the maximum inhibition of AII
- $Y_{(All)}$: — Hill coefficient of the AII vs. benazeprilat effect curve
- E_{max} (RA): — Maximum stimulatory effect on RA
- EC_{50} (RA): pg/ml Difference in All between placebo and benazepril-treated dogs for achieving 50% of the maximal stimulation of RA
- $Y_{(RA)}$: — Hill coefficient of the RA vs. All effect curve
- I_{max} (AL D): — Maximum inhibition of ALD production
- IC_{50} (ALD): pg/ml Difference in All between placebo and benazepril-treated dogs for achieving 50% of the maximal inhibition of ALD
- $Y_{(ALD)}$: — Hill coefficient of the ALD vs. All effect curve
pharmacodynamic (PK/PD) modeling approach. Furthermore, similar determinants of RAAS activation (i.e., renal hypoperfusion) and regulation (e.g., interactions with the β-adrenergic system) can be found in dog and human CHF patients (3,14), and the use of ACE inhibitors is part of the standard of care therapy in both species. Therefore, information generated in dogs also further improves the understanding of the effect of ACE inhibition on the dynamics of the RAAS in humans.

MATERIALS AND METHODS

Animals

The study was performed in compliance with a registered Swiss permit covering animal experiments for Cardiovascular Research in Dogs as approved by the Cantonal Animal Welfare Committee and Novartis Veterinary Services. The study protocol was designed to use the fewest number of animals while being consistent with the scientific needs of the research, and conformed to the Principles of Laboratory Animal Care (NIH publication # 85–23, revised in 1985).

Twelve healthy adult (6 males and 6 females), non-neutered, 40–44 months old beagle dogs weighing between 11.9 and 19.3 kg (Marshall Europe, Green Hill, Montichiari, Italy) were randomly allocated to 2 treatment groups: (i) benazepril 5 mg PO, q24 h (n: 6) and (ii) placebo (i.e., benazepril vehicle) (n: 6), in a cross-over design. The average dosage of benazepril was 0.34 mg/kg (SD: 0.04 mg/kg).

Suitability for inclusion was evaluated by a physical examination and confirmed by analysis of diverse hematological (red and white blood cells counts, Hb, Hct) and clinical chemistry (albumin, total protein, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine) parameters.

Housing Conditions

Dogs were acclimatized to the experimental facility at least 1 week prior to the experiment. Animals were housed in individual pens (about 2 m²/animal) containing granulate bedding material and an additional elevated platform for resting. The study room had natural daylight and additional artificial light of similar intensity (400 lux) from 07:00 to 19:00 h. Room temperature and relative humidity were within the target ranges of 17 to 23°C and 35 to 75%, respectively. Drinking water quality was compliant with the Swiss Federal Regulation on Foodstuff, and was offered ad libitum. Starting 5 days before drug administration, the dogs were offered a low-sodium diet (0.05% sodium) at 13:00 h, as a noninvasive, fully reversible, and reliable model of RAAS activation in dogs (11). Depending on the size of the ration, the individual daily sodium intake ranged from 5.8 to 9.5 mEq. The amount of food given per dog was kept constant throughout the study.

Experimental Procedure

Dogs received benazepril or placebo tablets for 5 days at 07:00 h. Blood specimens for benazeprilat, RA, AII, and ALD quantitation in plasma were withdrawn from the vena jugularis into 1.2 or 2.7 ml S-Monovette tubes (Sarstedt Inc., Newton, NC, USA). Samples were collected after 5 days of oral dosing at the following timepoints relative to administration: −1, 0 (just before dosing), + 1, 2, 4, 6, 12, 13, and 16 h. Due to the known sensitivity of the renin-angiotensin cascade to posture and external stimuli (15), specific precautions were taken: i) dogs were kept and maintained in the same position (up and standing) during blood collection, ii) sampling was performed in a sound-protected room, and iii) low-intensity lighting was used during withdrawal. Blood samples were cooled on ice, and centrifuged under refrigeration (2±1°C, 15 min) within 30 min of sampling. Plasma was then transferred into cooled propylene tubes, snap-frozen, and stored at −80°C.

Analytical Methods

Benazeprilat concentrations in dog plasma were measured using a solid phase extraction and liquid chromatography-tandem mass spectrometry method. Calibration standards ranging from 0.5 to 250.0 ng/ml were used for quantification. As described by Mochel et al. (11,16,17), RA was determined by calculating the rate of angiotensin I (AI) formation after incubation of endogenous renin and angiotensinogen in plasma (2 h, 37°C, pH 7.2). AI concentrations were measured after liquid solid extraction using a validated enzyme immunoassay (EIA) test (S-1188 Angiotensin I-EIA kit; host: rabbit high-sensitivity European Conformity (CE)-marked; Bachem, Bubendorf, Switzerland). Analyses were performed in duplicates; values with a CV% below 25% were retained for statistical evaluation. AII plasma concentrations were analyzed after liquid solid extraction using a validated EIA test with a specific monoclonal anti-AII antibody (A05880 Angiotensin II SPIE-IA kit; Bertin Pharma, Montigny le Bretonneux, France). Analyses were performed in duplicates, values with a CV% below 30% were retained for statistical evaluation. ALD concentrations were determined with a liquid chromatography-tandem mass
spectrometry method using an isotope dilution technique. Calibration standards ranging from 20 to 2000 pg/ml were used for quantification in plasma.

Data Analysis

Chi-Square Statistics for Testing the Zero-Amplitude Hypothesis

To determine the periodic nature of RA, AII, and ALD during placebo treatment, a p-value was derived from the difference in objective function value (OFV) between the fit of a constant mean (1 model parameter), and that of a 24-h cosine function (3 model parameters). In nonlinear mixed-effects models the OFV is derived as minus 2 times the logarithm of the likelihood of the data given the model, with a lower value indicating a better model (18). The difference in OFV between two contending hierarchical models follows an asymptotic chi-square distribution with degrees of freedom equal to the difference in the number of parameters between two models. A periodic rhythm was considered to be statistically significant for a drop in OFV superior to 5.9, for a risk level \(\alpha \): 0.05.

Pharmacokinetic/Pharmacodynamic Modeling

Nonlinear Mixed-Effects. Benazeprilat pharmacokinetics and time-varying changes in RA, AII, and ALD were fitted by means of nonlinear mixed-effects models, using the first order conditional estimation method with interaction of NONMEM version 6 (Icon Development Solutions, Ellicott City, Maryland, USA). Individual model parameters were obtained post-hoc as empirical Bayes estimates.

Similar to Sheiner and Ludden (18), mathematical models were written using the following format (Eq. 1):

\[
y_{ij} = F(\phi_i, t_{ij}) + G(\phi_i, t_{ij}, \beta) \cdot e_{ij}, \quad j = 1, \ldots, n_i \\
\phi_i = \mu \cdot e^\eta, \quad i = 1, \ldots, N
\]

Where \(y_{ij} \) is the observed variable (e.g., RA) measured on the \(i^{th} \) individual at time \(t_{ij} \), \(\phi_i \) is the vector of individual parameters, \(F(\phi_i, t_{ij}) \) is the value of that observed variable at time \(t_{ij} \) for an individual with parameters \(\phi_i \), and \(e_{ij} \) is an independent random variable. The function \(G(\phi_i, t_{ij}, \beta) \) is the standard deviation of the error of a given measurement at time \(t_{ij} \). In nonlinear mixed-effects models \(F(\phi_i, t_{ij}) \) is known as the structural model (error-free), while \(G(\phi_i, t_{ij}, \beta) \) is the residual error model (combining unexplained variability and measurement noise). \(\mu \) represents the typical value (population median) of a model parameter. The sources of variation between the individual parameters \(\phi_i \) can be further explained by population characteristics (i.e. covariates) that can be included additively or proportionally to \(\mu \). The independent random variables \(\eta_i \) represent the unexplained difference between the value of the individual parameters \(\phi_i \) and their median \(\mu \). The random variables \(e_{ij} \) and \(\eta_i \) were assumed to be normally distributed with mean value 0 and variance-covariance matrix \(\sigma^2 \) and \(\omega^2 \), while \(y_{ij} \) and \(\phi_i \) were log-normally distributed.

Inclusion of Covariate Relationships. Population covariates search was performed using the stepwise covariate model building tool of Perl-speaks-NONMEM (19), with forward inclusion based on \(p \): 0.05 and afterwards backward exclusion based on \(p \): 0.01. Covariates of interest included bodyweight and sex.

Model Evaluation Standard goodness-of-fit diagnostics, including population and individual predictions vs. observations, and the distributions of weighted residuals over time were used to evaluate the performances of the final model. Graphical assessment was performed using the R-based software Xpose version 4.1 (20) in R version 2.15.1. Model selection was based on statistical significance between competing models using the OFV obtained from NONMEM, graphical evaluation and validity of parameter estimates. Residual error estimates from the mathematical models were used as supportive information for evaluation of lack of fit. Normality and independence of residuals were evaluated using histograms, quantile-quantile plots, and autocorrelation of conditional weighted residuals in Xpose version 4.1.

Model Validation Two simulation-based diagnostics were used for validation of the final model: i) visual predictive checks, and ii) mirror plots, both options being automated in Perl-speaks-NONMEM.

i) Visual predictive checks

To assess the validity of final model parameter estimates, the 80% confidence interval of the 5th, 50th, and 95th percentile calculated from 1000 Monte-Carlo simulations was overlaid to the corresponding percentiles of the raw data using Xpose version 4.1.

ii) Mirror plots

The mirror plots option of Perl-speaks-NONMEM was used to create 3 simulation table files. Mirror plots were provided with the intention of comparing goodness-of-fits obtained from raw observations and simulated datasets. In the absence of model misspecification, simulated data should ‘mirror’ the diagnostic plots obtained with the original datafile. Predictions obtained from the raw observations and the simulated datasets were then evaluated graphically using Xpose version 4.1.
RESULTS

Pharmacokinetic Modeling

Individual and average benazeprilat plasma concentrations and effect on the RAAS following multiple oral dosing of benazepril (5 mg) are presented in Figs. 1 and 2. Benazeprilat data were analyzed using the class of pharmacokinetic models developed by Lees et al. (21) for ACE inhibitors (Fig. 3). Similar to Toutain et al. (22), a saturable binding model was found to fit the data reasonably well, as shown by the standard goodness-of-fit diagnostics (Fig. 4), the individual predictions (Fig. 5), and the simulation-based validation diagnostics (Figs. 6, 7, and Supplementary Material).

The final selected model is a reduced version of the physiologically-based pharmacokinetic model developed by Picard-Hagen et al. (23) for description of cortisol disposition in ewes. In a nutshell, a compartmental approach was used where the total amount of benazeprilat, as measured by the bioanalytical assay, is the sum of i) benazeprilat specifically and reversibly bound to circulating ACE (termed \(A_{\text{bound}}\)) and ii) benazeprilat free of binding (referred to as \(A_{\text{free}}\)) (Fig. 3). The fraction of benazeprilat that binds to tissular ACE cannot be measured by bioanalytical assays, and was not included in the final pharmacokinetic model. The \(A_{\text{free}}\) fraction represents the amount of benazeprilat that is systemically cleared from the central compartment, according to the first-order rate constant \(k_{10}\) (details below). The nonlinear binding to systemic ACE, according to the second-order rate constant of association \(k_1\) is reflective of a target-mediated drug disposition (TMDD) model. Note that \(A_{\text{free}}\) actually corresponds to truly free benazeprilat and benazeprilat non-specifically bound to albumin, these 2 measures being indistinguishable from a kinetics viewpoint (22,23).

Free benazeprilat was used as the driving force for describing the processes of drug elimination, and reversible binding to soluble ACE. The model of benazeprilat disposition could be described using the following equations (Eqs. 2 to 5):

\[
\text{If } t \leq T_{\text{inf}}: \quad \frac{d(A_{\text{depot}})}{dt} = \frac{-k_{\text{a}}A_{\text{depot}}}{T_{\text{inf}}} - k_{10}A_{\text{depot}} - k_1A_{\text{free}}(BS - A_{\text{bound}}) + k_2A_{\text{bound}} \\
\text{If } t > T_{\text{inf}}: \quad \frac{d(A_{\text{depot}})}{dt} = \frac{k_{\text{a}}A_{\text{depot}}}{T_{\text{inf}}} - k_{10}A_{\text{depot}} - k_1A_{\text{free}}(BS - A_{\text{bound}}) - k_2A_{\text{bound}}
\]

A sequential zero and first-order absorption model was found to best fit the data, where \(T_{\text{inf}}\) is the duration of the hypothetical infusion into the depot compartment (h), \(k_a\) is a first-order rate constant (h\(^{-1}\)) representing the absorption of benazepril into the central compartment and its \textit{in vivo} conversion to benazeprilat (Fig. 1), and \(t\) is the time (h). \(k_{10}\) is the first-order rate constant (h\(^{-1}\)) of elimination.
from the central compartment, k_1 is the second-order rate constant (nM$^{-1}$h$^{-1}$) of association of the benazepril-ACE complex, k_2 is the first-order rate constant (h$^{-1}$) of dissociation of the benazepril-ACE complex, and BS is the maximal binding capacity to circulating ACE (nM) in the central compartment. For simplification purposes the model of benazepril disposition was developed assuming binding to a single ACE site. A quasi-proportional error model (i.e., additive error in the log domain) was used to account for the residual noise in the measurement of benazepril.

Final estimates of the pharmacokinetic model parameters (including relative standard error, RSE and between-subject variability, BSV) are summarized in Table I. BSVs are expressed as standard deviation estimates of the random effects. The residual error (CV%) in benazepril predictions was estimated at 20%. The precision of the final model parameters quantified by relative standard errors was considered satisfactory (RSEs $<$ 35%).

The estimated large apparent volume of distribution of benazepril (V_c/F) (6.3 l/kg) is in agreement with previous findings from Toutain et al. (22) in dogs. Results from the covariate analysis showed that sex, but not bodyweight, had a significant influence on V_c/F ($p < 0.01$). Specifically, the apparent volume of distribution in male dogs was estimated to be 40% larger compared to females.

The apparent systemic clearance (Cl/F) of free benazepril (l.h$^{-1}$/kg) was calculated using the following relation (Eq. 6):

$$Cl/F = k_{10}.V_c$$

While the global extraction coefficient of benazepril E was derived from the estimated systemic clearance and the dog cardiac output (ml.min$^{-1}$/kg), using Eqs. 7 to 9:

$$Cardiac\ output = 180.\text{bodyweight}^{(-0.195)}$$

$$E = \frac{Cl/F}{Cardiac\ output}$$

$$E = \frac{k_{10}.V_c}{180.\text{bodyweight}^{(-0.195)}}$$

The apparent systemic clearance of benazepril was estimated to be high (3.5 l.h$^{-1}$/kg, or 58.8 ml.min$^{-1}$/kg), with a global extraction coefficient E of 0.55 for a typical 15 kg dog. Thereof, the half-life corresponding to the rate constant of
elimination of free benazeprilat was estimated to be rather short (about 1 h). The associated high value of \(k_{10}\) (0.56 h\(^{-1}\)) compared to the rather low estimate of \(k_2\) (0.01 h\(^{-1}\)) unveils that the terminal phase of benazeprilat disposition is driven by dissociation processes, rather than elimination from the central compartment.

Pharmacodynamic Modeling

The time-course profiles of RA, AII, and ALD in dogs receiving placebo and ACE inhibition therapy for 5 days can be found in Fig. 2. A stepwise integrated MB PK/PD model was used, which includes the periodic nature of RA, AII, and ALD during placebo treatment, and the subsequent changes in dynamics following inhibition of ACE. Benazeprilat data were analyzed using the class of pharmacokinetic models developed by Lees et al. (21) for ACE inhibitors. A compartmental approach was used where the total amount of benazeprilat, as measured by the bioanalytical assay, is the sum of \(i\) benazeprilat specifically and reversibly bound to circulating ACE (termed \(A_{\text{bound}}\)) and \(ii\) benazeprilat free of binding (referred to as \(A_{\text{free}}\)). A sequential zero and first-order absorption model was found to best fit the data, where \(T_{\text{ref}}\) is the duration of the hypothetical infusion into the depot compartment (not measured, i.e. shaded in grey), and \(k_a\) is a first-order rate constant representing the absorption of benazepril into the central compartment and its in vivo conversion to benazeprilat. \(k_1\) is the second-order rate constant of association of the benazeprilat-ACE complex, and \(k_2\) is the first-order rate constant of dissociation of the benazeprilat-ACE complex. The free fraction represents the amount of benazeprilat that is systemically cleared from the central compartment, according to the first-order rate constant \(k_{10}\). The modulatory effect of benazeprilat on the RAAS was described using a combination of immediate response models, where benazeprilat concentrations vs. time data served as the driving force for prediction of AII, while RA and ALD levels were derived from the predicted difference in AII during placebo and benazepril treatment. See text in Materials and Methods section for details.

\[f(t_{ij}) = M_i \left(1 + A_i \cos \left(\frac{(t_{ij} - \psi_i)}{\tau_i} \right) \right) \]

(10)

Where \(f(t_{ij})\) is the predicted RA (pg/ml.h\(^{-1}\)), AII (pg/ml), or ALD (pg/ml.h\(^{-1}\)) placebo value at time \(t_{ij}\), \(M_i\) is the mesor (daily average of rhythm in pg/ml, or pg/ml.h\(^{-1}\)) for the \(i\)th individual, \(A_i\) is the amplitude of the cosine (pg/ml, or pg/ml.h\(^{-1}\)), \(\psi_i\) is the acrophase (or time of peak, in h), and \(\tau_i\) is the fixed 24-h period of the cosine for that individual.

Pharmacodynamic Modeling

The time-course profiles of RA, AII, and ALD in dogs receiving placebo and ACE inhibition therapy for 5 days can be found in Fig. 2. A stepwise integrated MB PK/PD model was used, which includes the periodic nature of RA, AII, and ALD during placebo treatment, and the subsequent changes in dynamics following inhibition of ACE. Typical (i.e. population median) parameter estimates from the pharmacokinetic model were fixed during development of the PK/PD model.

1. **Modeling of placebo data**

The cosinor fit of the data was statistically significant for RA, AII, and ALD (\(p<0.01\)), supporting the hypothesis of time-varying dynamics with a 24-h period (Table II). Therefore, circadian changes in RA, AII, and ALD from the placebo data could be described according to Eq. 10:

\[f(t_{ij}) = M_i \left(1 + A_i \cos \left(\frac{(t_{ij} - \psi_i)}{\tau_i} \right) \right) \]

(10)

Where \(f(t_{ij})\) is the predicted RA (pg/ml.h\(^{-1}\)), AII (pg/ml), or ALD (pg/ml.h\(^{-1}\)) placebo value at time \(t_{ij}\), \(M_i\) is the mesor (daily average of rhythm in pg/ml, or pg/ml.h\(^{-1}\)) for the \(i\)th individual, \(A_i\) is the amplitude of the cosine (pg/ml, or pg/ml.h\(^{-1}\)), \(\psi_i\) is the acrophase (or time of peak, in h), and \(\tau_i\) is the fixed 24-h period of the cosine for that individual.

Data from the various variables were fitted simultaneously, using the periodic nature of RA to estimate the acrophase and the relative amplitude of downstream biomarkers AII and ALD (the 3 endpoints sharing the same typical value). The peak RA, AII, and ALD in healthy beagle dogs fed a low-sodium diet at 13:00 h was estimated to lie around 23:00 h (Table III). Estimates of residual errors (CV%) from the mathematical models were 38%, 30%, and 50% for RA, AII, and ALD, respectively. The precision of the final model parameters was considered adequate (RSE<20%).
2. Modeling of angiotensin II data

Total benazeprilat concentrations were found to mirror well the time-variations of observed AII, such that benazeprilat concentration-time data predicted from Eqs. 2 to 5, could be used as the driving force in an immediate response submodel (Eqs.11 and 12):

\[E_1(C_{ij}) = \frac{I_{\text{max},i}(\text{AII})}{1 + \left(\frac{C_{ij}}{I_{50,i}(\text{AII})} \right)^\gamma_{i(\text{AII})}} \]

\[\text{AII}(t_{ij}) = f(t_{ij}) \cdot E_1(C_{ij}) \]

Where \(\text{AII}(t_{ij}) \) is the predicted AII level (pg/ml) at time \(t_{ij} \) in a benazepril-treated individual, \(f(t_{ij}) \) is the predicted AII placebo value (pg/ml) at time \(t_{ij} \) for that individual \(i \). \(E_1(C_{ij}) \) is the inhibition function that depends on predicted total benazeprilat concentrations \(C_{ij} \) (ng/ml) (Eqs. 2 to 5), \(I_{\text{max},i}(\text{AII}) \) is the maximal inhibition of AII production, \(I_{50,i}(\text{AII}) \) is the total benazeprilat concentration (ng/ml) that produces half of the maximum inhibition, and \(\gamma_{i(\text{AII})} \) is the Hill coefficient of the AII vs. \(C_{ij} \) effect curve.

3. Modeling of renin activity data

Subsequently, in an attempt to quantify the drug-induced counter-regulation of RA, the differences between predicted AII concentrations during placebo treatment and those at corresponding times after benazepril administration \(\Delta(t_{ij}) \) were used in a 3-parameter sigmoid \(E_2(\Delta) \) submodel, as follows (Eqs. 13 and 14):

\[E_2(\Delta(t_{ij})) = 1 + \left(\frac{E_{\text{max},i}(\text{RA}) \cdot \Delta(t_{ij})}{E_{\text{C}_{50,i}(\text{RA})} + \Delta(t_{ij})} \right) \]

\[\text{RA}(t_{ij}) = f(t_{ij}) \cdot E_2(\Delta(t_{ij})) \]

Where \(\text{RA}(t_{ij}) \) is the predicted RA level (pg/ml.h\(^{-1}\)) at time \(t_{ij} \) in a benazepril-treated individual, \(f(t_{ij})_{\text{RA}} \) is the predicted RA placebo value (pg/ml.h\(^{-1}\)) at time \(t_{ij} \) for that individual \(i \), \(E_2(\Delta(t_{ij})) \) is the stimulation function that depends on \(A_{ij} \) \(E_{\text{max},i}(\text{RA}) \) represents the maximum
stimulatory effect of Δ_{ij} on renin, $EC_{50,ij}$ is the difference in AII (pg/ml) between placebo and benazepril-treated dogs for achieving 50% of the maximal stimulation of RA, and $\gamma_{i,RA}$ is the Hill coefficient of the RA$_{ij}$ vs. Δ_{ij} effect curve.

4. Modeling of aldosterone data

The reduction of AII following ACE inhibition therapy was finally used as the driving force to predict ALD time-variations in the following empirical submodel (Eqs. 15 and 16):

$$E_3(A_{ij}) = 1 - \left(\frac{I_{\text{max},i}(ALD)\cdot A_{ij}^{\gamma_{i,ALD}}}{IC_{50,ij}(ALD) + A_{ij}^{\gamma_{i,ALD}}} \right)$$

$$ALD(t_{ij}) = f(t_{ij})_{\text{ALD}}E_3(A_{ij})$$

Where $ALD(t_{ij})$ is the predicted ALD level (pg/ml) at time t_{ij} in a benazepril-treated individual, $f(t_{ij})_{\text{ALD}}$ is the predicted ALD placebo value (pg/ml) at time t_{ij} for that individual i, $E_3(A_{ij})$ is the inhibition function that depends on predicted A_{ij}, $I_{\text{max},i}(ALD)$ is the maximal inhibition of ALD production, $IC_{50,ij}(ALD)$ is the difference in AII (pg/ml) between placebo and benazepril-treated dogs for achieving 50% of the maximal inhibition of ALD, and $\gamma_{i,ALD}$ is the Hill coefficient of the ALD_{ij} vs. A_{ij} effect curve.

The final full model, which enabled the simultaneous fit of AII, RA, and ALD data, was found to characterize the
time-varying changes of the renin-angiotensin aldosterone cascade satisfactorily, as shown by the standard goodness-of-fit diagnostics (Fig. 4), the individual predictions (Fig. 5), and the simulation-based validation diagnostics (Figs. 6, 7, and Supplementary Material). A quasi-proportional error model (i.e. additive error in the log domain) was used to

Fig. 6 Simulated pharmacokinetic and pharmacodynamic properties of benazepril in healthy beagle dogs fed a low-sodium diet. Benazepril (top left pane), AII (top right pane), RA (bottom left pane) and ALD (bottom right pane) simulations using final parameter estimates from Tables I, III and IV (step size for the numerical Runge–Kutta integrator: 0.01 h). Continuous grey line: simulated time-course profiles in a typical placebo-treated dog, thick continuous red line: simulated time-course profiles in a typical benazepril-treated individual (5 mg PO, q24 h). The performance of the full model in reproducing the data can be appreciated by comparing the simulations to the raw observations presented in Figs. 1 and 2.

Fig. 7 Visual predictive checks of the full pharmacokinetic/pharmacodynamic model. Visual predictive checks of benazepril pharmacokinetic (top left pane) and action on AII (top right pane), RA (bottom left pane), and ALD (bottom right pane) generated from 1,000 Monte Carlo simulations. Solid and dashed red line: median, 5th and 95th percentiles of the observed data. Middle red shaded area: 80% confidence interval of the simulated median. Lower and upper red shaded areas: 80% confidence interval of the simulated 5th and 95th percentiles. The full PK/PD model was able to capture the time-varying changes of benazepril, RA, AII, and ALD reasonably well, as shown by the good agreement between observed and model-predicted percentiles.
Comparison of Objective Function Value (OFV) for Statistical Testing of the Zero-Amplitude Hypothesis

<table>
<thead>
<tr>
<th>Renin activity (RA)</th>
<th>Angiotensin II (AII)</th>
<th>Aldosterone (ALD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFV (straight line)</td>
<td>−18.2</td>
<td>−61.9</td>
</tr>
<tr>
<td>OFV (cosine model)</td>
<td>−57.5</td>
<td>−101.9</td>
</tr>
<tr>
<td>Difference in OFV</td>
<td>−39.2</td>
<td>−40.0</td>
</tr>
<tr>
<td>p-value</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

For rhythm detection, a p-value was derived from the difference in OFV between the fit of a constant mean, and that of a cosine function. A periodic rhythm was considered as statistically significant for a drop in OFV > 5.9 (for a risk level α: 0.05). Model estimates of the amplitudes can be found in Table III.
apparent systemic clearance (3.5 l/h/kg), associated with a rapid elimination constant (0.56 h⁻¹). These figures are in agreement with previous investigations from Toutain et al. (22) in dogs, using a more complex physiological-based kinetics model (4.9 l/kg and 5.5 l/h⁻¹/kg for Vc/F and Cl/F, respectively). In addition, the slow dissociation of benazeprilat from its target (k2: 0.01 h⁻¹) unveils that the terminal phase of benazeprilat disposition is driven by unbinding processes, rather than elimination from the central compartment. Compared with the in vivo dissociation constant (k2) reported by Toutain et al. (22) (3.9 nM), the estimated k2 (k2/k1) obtained from our model is considered small (ca. 0.9 nM). However, the value from Toutain et al. represents the concentration of benazeprilat that produces saturation of half of the entire

<table>
<thead>
<tr>
<th>Table III</th>
<th>Parameter Estimates from the Modeling of the Placebo Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin II (AII)</td>
<td>M_{AII}</td>
</tr>
<tr>
<td></td>
<td>A_{AII}</td>
</tr>
<tr>
<td></td>
<td>ψ_{AII}</td>
</tr>
<tr>
<td>Renin activity (RA)</td>
<td>M_{RA}</td>
</tr>
<tr>
<td></td>
<td>A_{RA}</td>
</tr>
<tr>
<td></td>
<td>ψ_{RA}</td>
</tr>
<tr>
<td>Aldosterone (ALD)</td>
<td>M_{ALD}</td>
</tr>
<tr>
<td></td>
<td>A_{ALD}</td>
</tr>
<tr>
<td></td>
<td>ψ_{ALD}</td>
</tr>
</tbody>
</table>

Abbreviations: M_{AII, RA, ALD}: mesor (daily average of rhythm) of AII, RA, or ALD, A_{AII, RA, ALD} and ψ_{AII, RA, ALD} amplitude and acrophase (time of peak) of the cosine function that describes time-varying changes in AII, RA, or ALD. RSE: relative standard error; BSV: between-subject variability (expressed as standard deviation of the random effect). Amplitudes are presented in absolute and relative units (using the mesor value as reference). Data from the various variables were fitted simultaneously, using the periodic nature of RA to estimate the acrophase and the relative amplitude of downstream biomarkers AII and ALD.

Note on BSV: for the sake of parsimoniousness and to avoid model overparameterization, BSV was only introduced on the most relevant pharmacodynamic parameters. For modeling of the placebo data:

- The amplitude of the cosine functions was expressed relative to the mesor value (as %): therefore BSV was only estimated for the mesor RA, AII, and ALD, not the amplitude;
- The acrophase RA, AII, and ALD was set to a same typical value, such that BSV could be distributed across the 3 biomarkers using the same eta term

Table IV | Parameter Estimates of the Mechanism-Based PK/PD Nonlinear Mixed-Effects Model |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin II (AII)</td>
<td>I_{max (AII)}</td>
</tr>
<tr>
<td></td>
<td>IC_{50 (AII)}</td>
</tr>
<tr>
<td></td>
<td>Y_{AII}</td>
</tr>
<tr>
<td>Renin activity (RA)</td>
<td>E_{max (RA)}</td>
</tr>
<tr>
<td></td>
<td>EC_{50 (RA)}</td>
</tr>
<tr>
<td></td>
<td>Y_{RA}</td>
</tr>
<tr>
<td>Aldosterone (ALD)</td>
<td>I_{max (ALD)}</td>
</tr>
<tr>
<td></td>
<td>IC_{50 (ALD)}</td>
</tr>
<tr>
<td></td>
<td>Y_{ALD}</td>
</tr>
</tbody>
</table>

Abbreviations: I_{max (AII)} maximum inhibition of AII production, IC_{50 (AII)} benazeprilat concentration that produces half of the maximum inhibition, Y_{AII} Hill coefficient of the AII vs. benazeprilat effect curve, E_{max (RA)} maximum stimulatory effect on RA, EC_{50 (RA)} difference in AII between placebo and benazeprilat-treated dogs for achieving 50% of the maximal stimulation of RA, Y_{RA} Hill coefficient of the RA vs. All effect curve. I_{max (ALD)} maximum inhibition of ALD production, IC_{50 (ALD)} difference in AII between placebo and benazeprilat-treated dogs for achieving 50% of the maximal inhibition of ALD, Y_{ALD} Hill coefficient of the ALD vs. All effect curve; §: fixed value. RSE: relative standard error; BSV: between-subject variability (expressed as standard deviation of the random effect).

Note on BSV: for the sake of parsimoniousness and to avoid model overparameterization, BSV was only introduced on the most relevant pharmacodynamic parameters. For modeling of the drug effect:

- Because only 1 level of dose of benazepril was used in the experiment, the estimated maximum inhibition of AII/ALD and the related IC_{50 (AII)}/IC_{50 (ALD)} value were highly correlated, such that BSV was only introduced on the potency terms;
- For similar considerations, BSV was not introduced on the Hill coefficients of the various concentration-response relationships.
ACE pool, including the \textit{tissular} form. In contrast, the k_d estimated from our model only accounts for the binding of benazeprilat to \textit{circulating} ACE, which is modest compared with \textit{tissular} ACE. Results from the present research also demonstrate that peptides of the renin-angiotensin cascade oscillate with a circadian periodicity in healthy beagle dogs fed a low-sodium diet (0.05% sodium) at 13:00 h. A cosine model with a fixed 24-h period was found to fit the periodic variations of RA, AII, and ALD well, as suggested by the results of the zero-amplitude hypothesis testing. Renin, AII, and ALD were found to oscillate in parallel over the observation span, with a peak lying around 23:00 h, and a relative amplitude of 29%. Characterization of the time-varying changes in RA, AII and ALD is key to quantifying the modulatory effect of benazepril on the dynamics of the circulating RAAS. Specifically, looking at the simulated profiles of benazeprilat pharmacodynamics in Fig. 6, one understands that the use of a straight line approximation of the mean (instead of a cosine) for modeling of the placebo data would have resulted in overestimating the effect of benazeprilat on AII and ALD, while underestimating its effect on RA. Deeper understanding of circadian rhythms can have a substantial impact on the therapeutic management of RAAS-related diseases by determining the time of drug administration that would optimize efficacy while minimizing the occurrence of adverse effects. This concept, referred to as chronotherapy, has been used for several years in the management of human rheumatoid arthritis, cancer, and cardiovascular diseases (27). In comparison with data from our earlier research in healthy dogs fed a normal-sodium regime (0.5% sodium) (17), the mesor and amplitude value of RA would be almost 4.0 times greater in dogs fed a low sodium diet (0.05% sodium). This consolidates our preliminary findings that dietary sodium interacts with the renin cascade, not only by influencing the tonic (i.e. mesor), but also the phasic (i.e. amplitude) secretion of renin (i.e. the greater the sodium intake, the smaller the mesor and the amplitude of RA).

The modulatory action of benazeprilat on the RAAS was characterized using an integrated mechanism-based PK/PD model, where benazeprilat concentration \textit{vs.} time data served as the driving force for prediction of AII, while RA and ALD were estimated from the difference in AII during placebo and benazeprilat treatment. Looking at the individual time-course profiles, no substantial time delay was observed between benazeprilat, RA, AII, and ALD dynamics in benazepril treated dogs, which is an indication of a rapid turn-over of RAAS biomarkers. Therefore, the effect of benazeprilat on the RAAS could be described using a combination of immediate response models.

Various PD studies on ACE inhibitors have failed to show a meaningful effect on circulating levels of AII and ALD in dogs. Knowlen et al. (28) have reported non-significant differences between pre-dose (367 ± 191 pg/ml) and post-dose (217 ± 173 pg/ml) ALD values after repeated administrations with captopril in 7 CHF dogs. Likewise, oral administrations of enalapril did not produce a significant fall in AII after 3 weeks of treatment in a dog study by Haggström et al. (29). In another experiment with enalapril by Koch et al. (30) in 8 male beagle dogs, ALD levels were not different from baseline measurements 24 h post-dose. Consistent with our previous investigations (11), our data show that benazepril noticeably influences the dynamics of the systemic RAAS at its recommended dose in dogs (0.25–1 mg/kg PO q24 h), resulting in a substantial reduction of AII and ALD, while increasing RA. In this low-sodium model of RAAS activation benazepril peak concentrations triggered on average a 2.8 and 2.3-fold decrease in AII and ALD levels, with a compensatory 2.6-fold increase in RA compared with placebo. The elevation of RA, as a consequence of benazepril-induced interruption of the AII-renin negative feedback loop (31), is commonly used as a surrogate marker of efficacy for monitoring time-dependent RAAS inhibition (32,33). Differences in the duration of effect of benazeprilat on the various RAAS biomarkers are also noteworthy. Simulations from the final PK/PD model suggest that the effect of benazeprilat on AII and ALD lasts between 5 and 10 h, while RA increases above placebo levels throughout the 16-h observation period. The contrast between RA and ALD is in agreement with the estimated \textit{EC}_{50} (1.0 pg/ml AII vs. 3.6 pg/ml for \textit{IC}_{50} (ALD)), which indicates that small changes in AII are responsible for marked variations in RA.

Why ACE Activity is not a Reflective Measure of RAAS Suppression

ACE inhibitors have constituted a breakthrough therapeutic option in the management of cardiovascular diseases in human and veterinary patients (8,34). Earlier investigations on the use of benazepril in dogs have established that benazeprilat produces a complete and long-lasting inhibition of ACE. In a study by King et al. (35), oral administrations of benazepril (0.25 mg/kg q24 h) were responsible for more than 85% inhibition of ACE during 24 h. In addition, Toutain and Lefebvre (10) have shown that an oral daily dose of 0.125 mg/kg benazepril causes inhibition of the entire systemic ACE pool within 48 h. Our results demonstrate that benazeprilat triggers a marked fall in AII and ALD, but for a much shorter period of time, which is consistent with earlier observations in dog and human patients (11,12,36). According to Van de Wal et al. (13), 45% of severe CHF patients experience elevated AII levels independent of serum ACE activity. In individuals with high ACE activity, non-compliance should be considered along with inadequate dose selection as potential explanations. Yet, in patients with low measurable ACE activity, this could be related to the production of AII by up-regulation of ACE independent pathways (37), in response to renin activation and accumulation of AI during short and
long-term use of ACE inhibitors (31). Enzymes other than ACE may contribute to the conversion of AI to AII. Chymase, cathepsin G, tonin and other proteases have been described as alternative pathways of AII production (4). The incomplete cathepsin G, tonin and other proteases have been described as ACE may contribute to the conversion of AI to AII. Chymase, long-term use of ACE inhibitors (31). Enzymes other than from the veterinary ((28); Koch sodium-induced activation of the renin cascade. Herein might have been insufficiently high to offset the low-
tion on the RAAS. In that respect, the dose of benazepril used the result of the opposite stimulatory effect of sodium deple-
tion in AII and ALD over time (p < 0.003 and p < 0.001, respectively) in spironolactone-treated CHF patients.

In the BENCH Study (8), the mean survival time of benazepril-treated dogs with mild to moderate CHF was improved by a factor of 2.7, as compared with the placebo group (428 vs. 158 days). A significant gain in exercise tolerance and clinical condition was also reported after 28 days of treatment. The favorable outcome of most CHF canine patients under ACE inhibition therapy, despite a potential incomplete reduction in AII and ALD, suggests that ACE inhibitors exert additional beneficial effects than AII suppres-
sion in the course of heart disease (34,48). As pointed out by Brown and Vaughan (49), inhibition of bradykinin degrada-
tion, which results in a subsequent gain in left ventricular relaxation and systolic dysfunction, may account for the clin-
ical effectiveness of ACE inhibitors. Along with its effect on ACE inhibition and bradykinin degradation, the blood pressure-lowering action of benazepril could also drive part of the reported clinical efficacy. Cardiac remodeling is a known deleterious consequence of arterial hypertension (50), and benazepril (2 mg/kg q24 h PO, for 2 weeks) has been shown to reduce blood pressure significantly (p < 0.05) in a dog model of renal hypertension (51).

Clinical Implications

In humans, the degree of activation of the renin-angiotensin aldosterone cascade is related to the severity of heart failure (40,41). In this population of patients, AII concentrations vary from less than 10 pg/ml in mild cases of CHF, to 70 pg/ml in seriously affected individuals (13). AII is viewed as a primary determinant of end-organ damage (4), while ALD is known to worsen AII tissue-damaging properties (42). Thereof, elevated exposure to AII and ALD has been associated with a poor prognosis in multiple case studies (4,43). Swedberg et al. (40) have found a positive correlation between mortality and levels of AII (p < 0.05) and ALD (p < 0.003) in a group of severe CHF patients. More recently, a 12 months follow-up study showed that AII was a significant predictor of death or new heart failure episodes in patients with left ventricular dysfunction (4). Likewise, high ALD concentrations were found to be a pre-
dictor of increased mortality risk that provides complementary prognostic value in a prospective cohort experiment of 294 patients with CHF of any cause and severity (5).

Compared with the depth of data from the human literature, only limited information on the relation of AII and ALD to a morbidity and mortality risk is presently available in dogs. Knowlen et al. (28) have established a direct relationship between ALD and the clinical status of dogs suffering from heart failure. Results from Bernay et al. (44) in a multicenter prospective trial indicate that ALD receptor antagonism decreases the risk of cardiac death, euthanasia, or severe wors-
ening in dogs with moderate to severe CVHD. Ovaert et al. (45) suggest that patients with elevated AII and ALD could benefit from additional therapy with ALD receptor blockers (ARBs), or ARAs. However, ALD escape has also been reported during long-term use of ARBs and ARAs (46,47). In a study by Naruse et al. (46), ALD increased above pre-
treatment levels after 8 weeks of ARB administration, causing end-organ damage and left ventricular hypertrophy in rodents. In addition, results from the RALES Neurohormonal Substudy (47) showed a significant increase in AII and ALD over time (p<0.003 and p<0.001, respectively) in spironolactone-treated CHF patients.

In an experiment by Kjolby et al. (52) in dogs fed a low-sodium regime (0.5 mmol/kg/day), AII and ALD increased by 140 and 1800%. Results from our earlier research (53) also indicated a 8 to 10 fold rise in urinary ALD in 6 healthy beagle dogs fed a low-salt diet (0.05% sodium) for 10 days. While sodium restriction is a powerful stimulant of the renin-
angiotensin cascade, a detailed description of AII and ALD levels in dogs suffering from CHF is currently missing. In that respect, the effect of benazepril on circulating RAAS peptides may have been hampered by the too strong stimulatory effect of sodium depletion, such that, one could expect greater blockade of RAAS with benazepril in heart diseased dogs. Furthermore, the use of several increasing doses of benazepril (instead of 1) would have provided more accuracy on the estimated model parameters. To better characterize the relationship between ACE inhibition, AII and ALD, measurement of ACE activity would have been necessary. However, collecting these extra samples would have resulted in exceeding the volume of withdrawn blood authorized in the afore-
mentioned Swiss permit. Finally, the non-significance of some covariate relationships (e.g. bodyweight on parameters of the
pharmacokinetic model) should be interpreted with caution given the low statistical power related to the small size of the study.

CONCLUSION

To conclude, we have developed an integrated PK/PD model that efficiently captures the disposition kinetics of benazeprilat, as well as the time-varying changes of systemic renin-angiotensin aldosterone biomarkers without, and with ACE inhibition therapy. This mechanistic representation provides a quantitative framework for better understanding the effect of ACE inhibition on the RAAS.

Our data show that benazepril noticeably influences the dynamics of the renin-angiotensin aldosterone cascade in dogs, resulting in a marked but transient decrease in AII and ALD, while increasing RA all over the observation span. The effect of ACE inhibition on AII and ALD may be one of the drivers of improved survival and quality of life in benazepril-treated dogs. To investigate this hypothesis further, additional efforts should be directed towards profiling of systemic RAAS peptides in symptomatic CHF canine patients.

ACKNOWLEDGMENTS AND DISCLOSURES

These investigations were conducted at the Centre de Recherche Sante Animale SA (CRA) of Novartis Animal Health, located in St-Aubin, Switzerland.

With the exception of Prof. Meindert Danhof, the authors of the manuscript are Novartis employees. The experiments were supported by Novartis Animal Health, Basel, Switzerland.

REFERENCES

